Search results for "Newton diagram"

showing 1 items of 1 documents

Oscillatory integrals and fractal dimension

2021

Theory of singularities has been closely related with the study of oscillatory integrals. More precisely, the study of critical points is closely related to the study of asymptotic of oscillatory integrals. In our work we investigate the fractal properties of a geometrical representation of oscillatory integrals. We are motivated by a geometrical representation of Fresnel integrals by a spiral called the clothoid, and the idea to produce a classification of singularities using fractal dimension. Fresnel integrals are a well known class of oscillatory integrals. We consider oscillatory integral $$ I(\tau)=\int_{; ; \mathbb{; ; R}; ; ^n}; ; e^{; ; i\tau f(x)}; ; \phi(x) dx, $$ for large value…

Box dimensionGeneral Mathematics010102 general mathematicsMathematical analysisPhase (waves)Resolution of singularitiesOscillatory integral ; Box dimension ; Minkowski content ; Critical points ; Newton diagramCritical points01 natural sciencesFractal dimensionCritical point (mathematics)Oscillatory integralAmplitudeDimension (vector space)Mathematics - Classical Analysis and ODEsMinkowski contentClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMinkowski contentOscillatory integralNewton diagram[MATH]Mathematics [math]fractal dimension; box dimension; oscillatory integrals; theory of singularitiesMathematics
researchProduct